ENTHALPY CALCULATION EXAMPLE

 $m_{H2O} = 13 g$

Calculate the enthalpy change for the melting of 13 g of ice.

SOLUTION

$$H_2O(s) \rightarrow H_2O(l)$$
 $\Delta H_{melt} = +6.03 \text{ kJ/mol } H_2O$
The molar enthalpy for the melting

of water can be found in reference tables.

The positive value means heat is absorbed (endothermic).

Step 1 Calculate the amount (in moles) of water.

$$n_{H2O} = \frac{m_{H2O}}{M_{H2O}}$$

$$= \frac{13 \text{ molar mass}}{18.02 \text{ mol}^{-1}}$$

$$= 0.72142... \text{ mol}$$

Step 2 Calculate the enthalpy change.

$$\Delta H = n_{H2O} \Delta H_{melt}$$

= (0.72142... mol)(+6.03 kJ mol⁻¹)
= +4.35016... kJ

Therefore, the enthalpy change for the melting of 13 g of ice is +4.4 kJ.